SiP vs. SoC
WiFi and Beyond

Nov 21, 2006
Winston Sun
Atheros Communications
Agenda

- System in a Package vs. System on a Chip:
 - History and Trends
- Atheros, a RoC company
- SiP Market Drivers
- Are SiPs in Your Future?
- Summary
SiP vs. SoC: History and Trends
SoC: History & Trends

- 5 Main drivers of the semiconductor industry
 - Cost
 - TTM
 - Features/Performance
 - Power
 - Size
- Feature/Complexity/Performance $\uparrow \Rightarrow$ TTM/Power/Size \uparrow
- WiFi: 11b \rightarrow 11g \rightarrow 11a/b/g (dual concurrent) \rightarrow 11n
- Cost/Mbps vs. time $\downarrow \downarrow$
Cost of WiFi Throughput

Cost of WLAN Data Rate ($/Mbps)

Year

Price decline of 2.5/yr

source: Zargari et al, RFIC 2005
WiFi: Today (2005)

Atheros 802.11a/b/g SoC
Technology Progression: GSM circa 1995

GSM Radio (transceiver) w/external components (e.g. filters)

Stetzler et al, ISSCC 95 (AT&T)
GSM SoC with integrated transceiver and CPU

Bonnaud et al, ISSCC 06 (Infineon)
Beyond WiFi and Cellular

- Converged Devices of Today
 - Cellular handsets: GSM (CDMA) + camera + Bluetooth
 - Smart phones: PDA + GSM + Bluetooth + camera + WiFi
 - DSCs: camera + WiFi
 - PDAs: PDA + GPS + WiFi

- Around the Corner
 - All of the above + DVB / Wireless USB / WiMax / WiMedia …
Market Trends

- Consumer Market Demands
 - More features (sooner) ⇒ complex designs, TTM
 - Thin/Sleek form factor ⇒ size
 - Longer battery life ⇒ low power

- What’s the solution?
 - System in a Package
 - Maybe
What was in your Cell?

Embedded Antenna
- Smaller
- Stability of signal

LCD Circuit
- Larger display, Color display
- Lower power consumption
- Higher resolution

BB PHY/MAC/CPU
- Host CPU
- Application processor

Camera Circuit
- Smaller
- Lower power consumption
- One unit of lens and control circuit

Memory Circuit
- Memory area for downloaded software
- Higher memory capacity

Plug-In Memory Card
- Smaller, thinner
- Higher memory capacity

Radio (FEM)
- Smaller and lower power consumption analog circuitry
- Decrease of # of mounted components

Power Supply Circuit
- Smaller size

Outer Interface Circuit
- Bluetooth, USB Interface
- MP3, GPS Interface
- Memory Card Interface

Source: H. Ueda JEITA
What’s in your Smart Phone? SiP!

Cross-section of stacked 6-die package

Source: T. Sakura, Univ of Tokyo
System Integration

Cost & TTM

System Complexity

SoC

SiP

MEMS
Passives
Multi-die

source: Fraunhofer IZM
Atheros, a WiFi Radio on a Chip Company
RoC Tradeoffs

Advantages

- Cost: die size and package
 - Single package
 - Fewer pads/pins
 - System reliability (fewer components)
- Power
 - Fewer pads, fewer interconnect
- Customer perception: single chip = cutting edge
- Radio Performance
 - Digital calibration/tuning
 - I/Q imbalance
 - Tx Carrier leakage
RoC System Integration Tradeoffs

- Challenges
 - Radio design: Reduced external component count
 - Amplification: PA’s and LNA’s
 - Frequency translation: Mixers and VCOs
 - Frequency selection: still need high-Q filters
 - Radio performance
 - Digital noise coupling
 - Fully differential topology
 - Deep N-well isolation
 - Avoid pkg coupling to sensitive nodes (VCO) by keeping them on chip
 - Analog to analog noise coupling
 - Tools for layout analysis
Economic Decision Criteria

- Market size and product life time
- Wafer/package/die cost
 - Different technologies for radio vs. digital
 - Re-use possibilities
 - Multi-die packages add 25-35%
- Opportunity Cost
 - TTM
- Yield
 - 2 smaller die vs. 1 bigger die
 - Digital tuning/calibration
Technical Decision Criteria

Technical Requirements & Engineering Feasibility

- 2 die: Where to partition? Digital vs. Analog Interface?
 - Digital: parallel I/F (more pads, interconnect, power)
 - Digital: high speed serial (SERDES on each chip)
 - Analog (interconnect noise isolation, ADAC on digital chip)
- Development effort (development cost)
- System reliability (fewer components for RoC)
Decision Swayers

- Requirements for footprint
- Tools
 - Ultimate goal: Single TO
 - System-level DV
 - Radio performance simulation
- Flexibility of Design
 - Re-useable die vs. IP blocks
- Was RoC the correct decision?
What’s Next for WiFi?

■ Does RoC make sense for MIMO? 90, 65, 45nm… ?
 ■ Analog doesn’t scale as easily as digital
 ■ Mix/Match for 2 die solution
 ■ Single chip vs. 2 die/1 pkg vs. 2 die/2 pkgs
 ■ If 2 die, where to partition
 ■ MIMO adds more interconnects – 2x, 3x, 4x
 ■ If single die, limitless interconnect possibilities

■ Economic drivers
 ■ Die cost
 ■ Opportunity cost

■ Engineering feasibility
 ■ Development cost
SiP Market Drivers for WiFi
Convergence in Mobile CE Devices

Converged Devices = Platform + Features

<table>
<thead>
<tr>
<th>Mobile CE</th>
<th>Platform</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bluetooth</td>
</tr>
<tr>
<td>Cell phone</td>
<td>GSM/CDMA</td>
<td>✓</td>
</tr>
<tr>
<td>PDA</td>
<td>Host CPU</td>
<td>✓</td>
</tr>
<tr>
<td>DSC</td>
<td>Imaging</td>
<td></td>
</tr>
<tr>
<td>MP3 player</td>
<td>Media Player</td>
<td>✓</td>
</tr>
<tr>
<td>Gaming console</td>
<td>Host CPU</td>
<td>✓</td>
</tr>
</tbody>
</table>
Market Overview: Portable/Mobile CEs

Mobile CE Market Segments

- Dual-mode Cellular/VOIP Phones
- Mobile Gaming
- Digital Cameras
- Portable Media Players

Source: In-Stat, 2005
WiFi for Portable/Mobile CEs

- New Market requirements
 - Low power
 - Small footprint
 - Package height
 - Thin is in
 - Stacked die may not be an option
 - Mechanical reliability (drop test)
 - “Plug and Play” system integration
"Single Chip" Mobile WiFi

- Component count
 - WLAN chip
 - Crystal
 - PA
 - LNA
 - FLASH
 - SAW
 - Other passives

- Simple solution: integrate with a SiP (Module)
SiP Tradeoffs

- **Advantages**
 - "Plug & Play" system integration
 - Layout
 - Test
 - Calibration
 - TTM
 - Fewer Components
 - Reliability
 - Yield
- **Challenges**
 - **Tools**
 - Signal Integrity
 - Mechanical Reliability (including thermal)
 - **Cost**
 - SiP package
 - Layout, test, calibration
Beyond WiFi

- Further Convergence
 - Bluetooth
 - WiMax
 - Wireless USB
 - WiMedia
 - GPS

- Integrate all “features” into a single platform
 - Mix/Match IP Die
 - “Plug & Play” integration
 - TTM
SoC for Converged Devices?

- **SoC**
 - Lower die cost
 - Lower power

- **SiP**
 - System houses want “best of all worlds”
 - Cost and performance
 - Features: “Moving target” standards
 - Development cost
 - Opportunity cost (TTM)
 - Manufacturability
Pushing the SiP Envelope

- New Materials
 - “Green”
 - Flexible substrate
 - Low-κ / high-κ
 - Adhesives

- Tools Requirement
 - Database of New Materials
 - Mechanical
 - Electrical
Summary: SiP vs. SoC

Decision Criteria

- Cost – die size (+ package)
- Cost – opportunity (TTM)
- Cost – development effort

![Diagram showing decision criteria for SiP vs. SoC](image-url)
Thank You

WIRELESS FUTURE. UNLEASHED NOW.